Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli.

نویسندگان

  • Nadia Gul
  • Bert Poolman
چکیده

The ATP-binding cassette (ABC) transporter ProU from Escherichia coli translocates a wide range of compatible solutes and contributes to the regulation of cell volume, which is particularly important when the osmolality of the environment fluctuates. We have purified the components of ProU, i.e., the substrate-binding protein ProX, the nucleotide-binding protein ProV and the transmembrane protein ProW, and reconstituted the full transporter complex in liposomes. We engineered a lipid anchor to ProX for surface tethering of this protein to ProVW-containing proteoliposomes. We show that glycine betaine binds to ProX with high-affinity and is transported via ProXVW in an ATP-dependent manner. The activity ProU is salt and anionic lipid-dependent and mimics the ionic strength-gating of transport of the homologous OpuA system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro reconstitution of osmoregulated expression of proU of Escherichia coli.

Osmoregulated expression of proU has been reconstituted in a cell-free system. proU encodes an osmotically inducible, high-affinity transport system for the osmoprotectant glycine betaine in Escherichia coli. Previously, a proU-lacZ fusion gene had been cloned, resulting in plasmid pOS3. In vivo osmoregulation of this extrachromosomal proU-lacZ fusion gene at low copy number showed that the pla...

متن کامل

Osmoregulatory systems of Escherichia coli: identification of betaine-carnitine-choline transporter family member BetU and distributions of betU and trkG among pathogenic and nonpathogenic isolates.

Multiple transporters mediate osmoregulatory solute accumulation in Escherichia coli K-12. The larger genomes of naturally occurring strains such as pyelonephritis isolates CFT073 and HU734 may encode additional osmoregulatory systems. CFT073 is more osmotolerant than HU734 in the absence of organic osmoprotectants, yet both strains grew in high osmolality medium at low K(+) (micromolar concent...

متن کامل

Characterization of the Osmoprotectant Transporter OpuC from Pseudomonas syringae and Demonstration that Cystathionine- -Synthase Domains Are Required for Its Osmoregulatory Function †

The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake...

متن کامل

Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function.

The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake...

متن کامل

OusB, a broad-specificity ABC-type transporter from Erwinia chrysanthemi, mediates uptake of glycine betaine and choline with a high affinity.

The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine beta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular membrane biology

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 2013